R-Store: A Scalable Distributed System
for Supporting Real-time Analytics

Feng Li, M. Tamer Ozsu, Gang Chen, Beng Chin Ooi @ICDE 2014

Presented by: Xiao Meng
CS848, University of Waterloo

Outline

- Background & Motivation
- System Overview

- System Design

- RTOLAP in R-Store

- Evaluation

- Conclusion

- Q&A

Background & Motivation

- Situation for large scale data processing
- Systems classified into 2 categories: OLTP, OLAP
- Data periodically transport to OLAP through ETL

- Demand
- Time critical decision making (RTOLAP)
- the freshness of OLAP results
- Fully RTOLAP entail executing query directly on OLTP data
* OLAP & OLTP processed by one integrated system

Background & Motivation

- Problem on simple combination
* Resource contention
- OLTP query blocked by OLAP
* Inconsistency
- Long running OLAP may access same data sets several times,
updates by OLTP could lead to incorrect OLAP results

- Solution — R-Store
- Resource contention
- Computation resource isolation
* Inconsistency
- Multi-versioning storage system

System Overview — A glimpse of R-Store

- OLAP query data based on timestamp of query submission from multi-versioning
storage system

— Modified HBase as storage
— Mapreduce job for query execution

- Periodically materialize real-time data into data cube
— Fully HBaseScan every time is time-consuming
* Entire table is scanned & shuffled during MR
— Streaming Mapreduce to maintain data cube

System Overview — R-Store Architecture

' OLTP submitted to KV Store
OLAP —» MapReduce
¢ OLAP query processed by
Incremental 10
Compaction S FUHSC&H MapReduce - Scan on HBase
MetaStore can
Refresh data cube through
A
. streaming MapReduce
OLTP Real-Time Data | Key/Value Store = DataCube
MetaStore to generate query
9p timestamp T Q & metadata
Refresh Cube
Real-Time DataCube

Distributed Streaming System

System Design — A Glimpse of HBase

| | _ Store
| :
: O @@ | HRegion EEE [StoreFile] [StoreFile] —
i ’ N [HFile | [HFile |
| "
| — ‘ e
| " (MemStore) Store
:) : O OO | HRegion EEB
Client ! aa', st -
—] | 0y _— mhle
=/ g (- .
_;:In(zl::(t)e() KeyValue's % ‘ N Store
e/ OO0 > | HRegion I B'E) [StoreFile] [StoreFile] s
| = | LUeFile] J \[HFie]
H i)

Flusher
Roller

rollWriter()

System Design — Storage Design based on HBase

- Extend Scan to 2 versions
— FullScan for querying data cube
— IncrementalScan for querying real-time data

- Infinite versions of data to maintain query consistency
— Compaction to remove stale versions
— Global compaction
* Immediately following data cube refresh
— Local compaction
+ Compact old versions not accessed by any scan process

System Design — IncrementalScan in detail

- Target: Find out changes since last data cube materialization

- Method

— Take 2 timestamps as input Tp¢ & Ty, return the values with largest timestamp before Tpe & T

- Implementations
— Naive: Accessing memstore & storefilein parallel

— Adaptive: Maintain key modified since last materialization, first scan memstore, scan or random
access keys based on cost

System Design — Compaction in detail

- Global compaction
— Similar to Hbase's default, retain only one version of each key
— Triggered by data cube's refresh completion

- Local compaction
— Compacted data stored in different file in case block scan process
— Files can be removed when not accessed by any scan
— Triggered when #tuple/#key exceeds threshold

System Design — Data cube

- Define a data cube for “Customer Profiles”

0-D (apex) cuboid

- Dimensions: age, income, buys

1-D cuboids

2-D cuboids

(age, income) (income, buys)

3-D (base) cuboid

(age, income, buys)

System Design — Data cube maintenance

- Re-computation
— First run

— FullScan on one region, generate a KV pair for each cuboid in mapper, aggregate &
output in reducer

- Incremental Update
— Consequent runs

— Propagation step to computes change & update step to update cube
— Streaming system updates cube inside & periodically materialize it into storage

System Design — HStreaming for cube maintenance

- Each mapper responsible for processing update within a key range
— Maintain KVs locally, cache hot keys in memory
— For updates, emit 2 KV pair for each cubiod(+, -)

- Reducer cache the output KV of mapper and invoke reduce every W, , refresh
cube every W,y pe

System Design — Data Flow of R-Store

Hstreaming Hbase-R MapReduce
. Updates
Region Server
Region for Original Table
Store Store _
Mapper MemStF)re MemSt‘Iare ' Mapper
StoreFile StorcFile
: : Reducer
Reducer ' Region for Data Cube ' Mapper
Region Server
Region for Original Table
Store Store _
Mapper MemSt'ore MemStlore : Mapper
StoreFile StoreFile
: Reducer
: | <«— OLAP
Reducer | | Region for Data Cube Mapper
Refresh Cube : ' T
l Compact RegionT Obtain tim.es.tamp
and statistics
MetaStore &

1. Updates arrives Hbase-R 2. stream updates to a Hstreaming mapper

3. Reducer periodically materialize local data cube to Hbase-R & notifies Metastore

RTOLAP in R-Store — Query Processing

Filter Condition

mfgr,brand price « e e : |
,. . . “=M1 ran price
~ Cube _M, ML.BI 2954 —— Mapper] ——— Bl 2954.Q :
. M2BI | 2440 : < \ brand price |
M2,B2 3513 S Bl | 3245
Incremental ’ : brand | price B2 1005
) . Scan | key vl v2) § Bl 831,+ p / '
 Part ———» 101 MI,BI1,831 MI,B2,940 — > Mapper2 ——> B2 | 940 Reducer2 |
R 101 M2,B1,690 MI,B1,540 : Bl 540,
- Map - Reduce
- Tag the values with 'Q" '+, '~/ - Do calculation based on

aggregation function & three values

Fvaluation

- Cluster of 144 nodes
* —Intel X3430 2.4 GHz processor
« — 8 GB of memory
+ — 2x500 GB SATA disks
* —gigabit Ethernet

- TPC-H data

Evaluation - Performance of Maintaining Data cube

500 10,000 . : . P .
B Throughput W Update
0 ReCompExe
2 400 8000 m ReCompScan -~ 1
= ©
§300 i £ 6,000
gl &b
7 200 % 4,000
2 8
- $—
a, (=9
500 | 2,000 |-
0
0 =) =T =P oo =)
10 20 30 40 50 60 70 £ 35 g5 £ 3 g5 g5
os o& o8& O& U.&e
Number of Nodes é - é - é = SR & -
SM 400M 800M 1,200M 1,600M
- Hstreaming with 10 nodes have higher Number of Updates
throughput than 40 Hbase-R nodes - 1.6 billion keys, 1% updated, update algorithm fast enough,

- latency equals to Hbase-R input speed

Evaluation - Performance of RT querying

5,000

4,000

Processing time (s)

T T T T T T T T T T

] IncreQueryExe
B IncreQueryScan
... B CubeScan

] BaselineExe

W BaselineScan

3,000 |-

2,000 -

1,000 (-

] Q Q Q Q Q
S5 2§ £§ £§ £§ £%
19 29 29 29 29 29
Mme mE8 M2 mE28 QMg mne
] Q Q Q Q Q
k= k= k= k= =,
1% 5% 10% 15% 20% 25%

Percentage of keys being updated

- Small key range updates scans

fewer data in Hbase-R, process fewer data

Evaluation - Performance of OLTP

100 10
£ Updates only) & Updates only
* Updates + OLAP Zz * Updates + OLAP
—~ 20 | S Q|)
2 80 2]
- -
: 2
S 60 | S 6t fa— W
n —
5 S
o~ i Lot
g 40 Y B—F—8s—_ - - -
—“S =
£ 2
= 20 52r 1
=%
35
a4
0 T T T T T T T 0 T T T T T T T
10 20 30 40 50 60 70 10 20 30 40 50 60 70
Number of Nodes Number of Nodes

(a) Throughput (b) Latency

Related Work

- Database
— C-Store(VLDB 05)

- Main-memory database
— HyPer(ICDE 11), HYRISE(VLDB 10)

- Druid(SIGMOD 14)

Conclusion

- Multi-version concurrent control to support RTOLAP
- Data cube to reduce storage requirement & improve performance
- Streaming system to refresh data cube

- Available at https://github.com/lifeng5042/RStore

Q&A

Backup — OLAP Cube

- A multi-dimensional generalization of a two- or three-dimensional
spreadsheet. Hypercube for dataset with more than three d’s.

- Dimensions: Product, time, cities...

- Cells: each cell of the cube holds a number that represents some measure of
the business, e.g. sales, profits...

- Slicer: the dimension held constant for all cells so that multi-dimensional
information can be shown in a 2D physical space of a spreadsheet.

Backup — OLAP Cube

- Data cube can be viewed as a lattice of cuboids
- The bottom-most cuboid 1s the base cuboid
- The top-most cuboid (apex) contains only one cell

- How many cuboids in an n-dimensional cube with L levels?

T = T (L +D
i=1

