
R-Store: A Scalable Distributed System
for Supporting Real-time Analytics
Feng Li, M. Tamer Ö zsu, Gang Chen, Beng Chin Ooi @ICDE 2014

Presented by: Xiao Meng

CS848, University of Waterloo

Outline
• Background & Motivation

• System Overview

• System Design

• RTOLAP in R-Store

• Evaluation

• Conclusion

• Q & A

Background & Motivation
• Situation for large scale data processing

 Systems classified into 2 categories: OLTP, OLAP

 Data periodically transport to OLAP through ETL

• Demand
 Time critical decision making (RTOLAP)

- the freshness of OLAP results

- Fully RTOLAP entail executing query directly on OLTP data

 OLAP & OLTP processed by one integrated system

Background & Motivation
• Problem on simple combination

 Resource contention
- OLTP query blocked by OLAP

 Inconsistency
- Long running OLAP may access same data sets several times,

updates by OLTP could lead to incorrect OLAP results

• Solution – R-Store
 Resource contention

- Computation resource isolation

 Inconsistency
- Multi-versioning storage system

System Overview – A glimpse of R-Store
• OLAP query data based on timestamp of query submission from multi-versioning

storage system

– Modified HBase as storage

– Mapreduce job for query execution

• Periodically materialize real-time data into data cube
– Fully HBaseScan every time is time-consuming

• Entire table is scanned & shuffled during MR

– Streaming Mapreduce to maintain data cube

System Overview – R-Store Architecture
• OLTP submitted to KV Store

• OLAP query processed by

MapReduce – Scan on HBase

• Refresh data cube through

streaming MapReduce

• MetaStore to generate query

timestamp T Q & metadata

System Design – A Glimpse of HBase

System Design – Storage Design based on HBase
• Extend Scan to 2 versions

– FullScan for querying data cube

– IncrementalScan for querying real-time data

• Infinite versions of data to maintain query consistency
– Compaction to remove stale versions

– Global compaction
 Immediately following data cube refresh

– Local compaction
 Compact old versions not accessed by any scan process

System Design – IncrementalScan in detail
• Target: Find out changes since last data cube materialization

• Method
– Take 2 timestamps as input 𝑇𝐷𝐶 & 𝑇𝑄 , return the values with largest timestamp before 𝑇𝐷𝐶 & 𝑇𝑄

• Implementations
– Naïve: Accessing memstore & storefile in parallel

– Adaptive: Maintain key modified since last materialization, first scan memstore, scan or random
access keys based on cost

System Design – Compaction in detail
• Global compaction

– Similar to Hbase’s default, retain only one version of each key

– Triggered by data cube’s refresh completion

• Local compaction
– Compacted data stored in different file in case block scan process

– Files can be removed when not accessed by any scan

– Triggered when #tuple/#key exceeds threshold

System Design – Data cube
• Define a data cube for “Customer Profiles”

• Dimensions: age, income, buys

System Design – Data cube maintenance
• Re-computation

– First run

– FullScan on one region, generate a KV pair for each cuboid in mapper, aggregate &
output in reducer

• Incremental Update
– Consequent runs

– Propagation step to computes change & update step to update cube

– Streaming system updates cube inside & periodically materialize it into storage

System Design – HStreaming for cube maintenance
• Each mapper responsible for processing update within a key range

– Maintain KVs locally, cache hot keys in memory

– For updates, emit 2 KV pair for each cubiod(+, -)

• Reducer cache the output KV of mapper and invoke reduce every 𝑊𝑟 , refresh
cube every 𝑊𝑐𝑢𝑏𝑒

System Design – Data Flow of R-Store

1. Updates arrives Hbase-R 2. stream updates to a Hstreaming mapper

3. Reducer periodically materialize local data cube to Hbase-R & notifies Metastore

RTOLAP in R-Store – Query Processing

• Map

• Tag the values with ‘Q’ ‘+’, ‘-’

• Reduce

• Do calculation based on
aggregation function & three values

Evaluation
• Cluster of 144 nodes

 – Intel X3430 2.4 GHz processor

 – 8 GB of memory

 – 2x500 GB SATA disks

 – gigabit Ethernet

• TPC-H data

Evaluation - Performance of Maintaining Data cube

• Hstreaming with 10 nodes have higher

throughput than 40 Hbase-R nodes • 1.6 billion keys, 1% updated, update algorithm fast enough,

• latency equals to Hbase-R input speed

Evaluation - Performance of RT querying
• Small key range updates scans

fewer data in Hbase-R, process fewer data

Evaluation - Performance of OLTP

Related Work
• Database

– C-Store(VLDB 05)

• Main-memory database
– HyPer(ICDE 11), HYRISE(VLDB 10)

• Druid(SIGMOD 14)

Conclusion
• Multi-version concurrent control to support RTOLAP

• Data cube to reduce storage requirement & improve performance

• Streaming system to refresh data cube

• Available at https://github.com/lifeng5042/RStore

Q & A

Backup – OLAP Cube
• A multi-dimensional generalization of a two- or three-dimensional

spreadsheet. Hypercube for dataset with more than three d’s.

• Dimensions: Product, time, cities…

• Cells: each cell of the cube holds a number that represents some measure of
the business, e.g. sales, profits…

• Slicer: the dimension held constant for all cells so that multi-dimensional
information can be shown in a 2D physical space of a spreadsheet.

Backup – OLAP Cube
• Data cube can be viewed as a lattice of cuboids

• The bottom-most cuboid is the base cuboid

• The top-most cuboid (apex) contains only one cell

• How many cuboids in an n-dimensional cube with L levels?

)1
1
(

n

i
i

LT

