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Background & Motivation

- Situation for large scale data processing
- Systems classified into 2 categories: OLTP, OLAP
- Data periodically transport to OLAP through ETL

- Demand
- Time critical decision making (RTOLAP)
- the freshness of OLAP results
- Fully RTOLAP entail executing query directly on OLTP data
* OLAP & OLTP processed by one integrated system




Background & Motivation

- Problem on simple combination
* Resource contention
- OLTP query blocked by OLAP
* Inconsistency
- Long running OLAP may access same data sets several times,
updates by OLTP could lead to incorrect OLAP results

- Solution — R-Store
- Resource contention
- Computation resource isolation
* Inconsistency
- Multi-versioning storage system




System Overview — A glimpse of R-Store

- OLAP query data based on timestamp of query submission from multi-versioning
storage system

— Modified HBase as storage
— Mapreduce job for query execution

- Periodically materialize real-time data into data cube
— Fully HBaseScan every time is time-consuming
* Entire table is scanned & shuffled during MR
— Streaming Mapreduce to maintain data cube




System Overview — R-Store Architecture

' OLTP submitted to KV Store
OLAP —» MapReduce
¢ OLAP query processed by
Incremental 10
Compaction S FUHSC&H MapReduce - Scan on HBase
MetaStore can
Refresh data cube through
A
. streaming MapReduce
OLTP Real-Time Data | Key/Value Store = DataCube
MetaStore to generate query
9p timestamp T Q & metadata
Refresh Cube
Real-Time DataCube

Distributed Streaming System




System Design — A Glimpse of HBase
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System Design — Storage Design based on HBase

- Extend Scan to 2 versions
— FullScan for querying data cube
— IncrementalScan for querying real-time data

- Infinite versions of data to maintain query consistency
— Compaction to remove stale versions
— Global compaction
* Immediately following data cube refresh
— Local compaction
+ Compact old versions not accessed by any scan process




System Design — IncrementalScan in detail

- Target: Find out changes since last data cube materialization

- Method

— Take 2 timestamps as input Tp¢ & Ty, return the values with largest timestamp before Tpe & T

- Implementations
— Naive: Accessing memstore & storefilein parallel

— Adaptive: Maintain key modified since last materialization, first scan memstore, scan or random
access keys based on cost




System Design — Compaction in detail

- Global compaction
— Similar to Hbase's default, retain only one version of each key
— Triggered by data cube's refresh completion

- Local compaction
— Compacted data stored in different file in case block scan process
— Files can be removed when not accessed by any scan
— Triggered when #tuple/#key exceeds threshold




System Design — Data cube

- Define a data cube for “Customer Profiles”

0-D (apex) cuboid

- Dimensions: age, income, buys

1-D cuboids

2-D cuboids

(age, income) (income, buys)

3-D (base) cuboid

(age, income, buys)




System Design — Data cube maintenance

- Re-computation
— First run

— FullScan on one region, generate a KV pair for each cuboid in mapper, aggregate &
output in reducer

- Incremental Update
— Consequent runs

— Propagation step to computes change & update step to update cube
— Streaming system updates cube inside & periodically materialize it into storage




System Design — HStreaming for cube maintenance

- Each mapper responsible for processing update within a key range
— Maintain KVs locally, cache hot keys in memory
— For updates, emit 2 KV pair for each cubiod(+, -)

- Reducer cache the output KV of mapper and invoke reduce every W, , refresh
cube every W,y pe




System Design — Data Flow of R-Store
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RTOLAP in R-Store — Query Processing
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Fvaluation

- Cluster of 144 nodes
* —Intel X3430 2.4 GHz processor
« — 8 GB of memory
+ — 2x500 GB SATA disks
* —gigabit Ethernet

- TPC-H data




Evaluation - Performance of Maintaining Data cube
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Evaluation - Performance of RT querying
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Evaluation - Performance of OLTP
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Related Work

- Database
— C-Store(VLDB 05)

- Main-memory database
— HyPer(ICDE 11), HYRISE(VLDB 10)

- Druid(SIGMOD 14)




Conclusion

- Multi-version concurrent control to support RTOLAP
- Data cube to reduce storage requirement & improve performance
- Streaming system to refresh data cube

- Available at https://github.com/lifeng5042/RStore




Q&A




Backup — OLAP Cube

- A multi-dimensional generalization of a two- or three-dimensional
spreadsheet. Hypercube for dataset with more than three d’s.

- Dimensions: Product, time, cities...

- Cells: each cell of the cube holds a number that represents some measure of
the business, e.g. sales, profits...

- Slicer: the dimension held constant for all cells so that multi-dimensional
information can be shown in a 2D physical space of a spreadsheet.




Backup — OLAP Cube

- Data cube can be viewed as a lattice of cuboids
- The bottom-most cuboid 1s the base cuboid
- The top-most cuboid (apex) contains only one cell

- How many cuboids in an n-dimensional cube with L levels?

T = T (L +D
i=1




